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1 Motivation and Objectives

The National Defense Authorization Act of 2012 identified a capability gap for future Special
Operations Forces (SOF) missions. The Act cites the aging MK V Special Operations Craft
and the delayed inception of the Combatant CraftMedium as a critical shortfall in the ability to
perform missions ranging from maritime interdiction to infiltration and extraction of personnel.
In order to fill this mission capability gap, new unconventional designs of marine vehicles are
required that can adapt to big waves and move at speeds twice as high as the existing SOF
vehicles. Hence, the theoretical design of such SOF vehicles and more broadly of other future
DoD applications involving unconventional designs and resilient systems requires high-fidelity
analyses, management of large data sets from a variety of sources, efficient allocation of com-
putational resources, and, most importantly, reliable quantification of uncertainty inherent in
multi-physics models of variable fidelity, operating conditions (e.g., extreme state seas), and
numerical computations as well as utilization of such information in risk-averse decision making.
Even for classical engineering systems that can be described at various levels of fidelity and for
which experimental data may exist, currently there are no mathematically rigorous methods to
combine these disparate information sources into a viable framework for the purpose of design
and optimization.

The objective of this seedling project is to overcome these limitations by developing a
new theoretical framework for design under uncertainty (DUU), based on new stochastic ap-
proaches for risk-averse design and optimization of engineering systems under uncertainty. To
this end, we combine stochastic multi-fidelity models and other sources of information about
system performance (including experimental data and/or expert opinions) using novel data fu-
sion and machine learning approaches; see Fig. 1. This will lead to a comprehensive description
of system performance with less uncertainty than in the case of single-source/model analysis, it
will allow the exploration of broader design spaces, and it will enable us to endow final designs
with rigorous certificates of quality. None of the methods in current engineering practice can
consistently account for the errors and uncertainties present in the complex sequence of analy-
ses embedded in the design process, and, furthermore, key statistical relationships among those
analyses are usually ignored. In addition, all decisions regarding the order in which to use avail-
able analysis and optimization tools are usually based on experience and intuition, which often
yields under-performance and inefficient use of available resources. The multi-information-source
optimization framework we develop allows us to decide on the timing and execution of a large

1



Figure 1: Sketch of the multi-information-source optimization approach for the design of an unconven-
tional high-speed marine vehicle. The framework contains the formulation of the stochastic optimization
problem and relies on a number of information sources (IS) for each participating discipline, e.g., struc-
tural mechanics, hydrodynamics, or material science. The multiple ISs for each discipline represent the
availability of tools at different levels of fidelity (larger circles indicate higher fidelity). For each disci-
pline, stochastic variable fidelity methods can be used to synthesize statistical relationships between ISs
with the help of stochastic reduced order models (ROMs) and error estimation techniques to enhance
accuracy and manage computational cost.

ensemble of predictive tools including stochastic simulations, assimilation of noise-corrupted
experimental data, and subject-matter expert opinions.

For a specific demonstration we consider an unconventional ultra-high speed marine vehi-
cle suitable to perform high speed manned and unmanned operations under severe sea state
conditions. There will be two modes of operation, the first targets up to moderate sea states
and very high speeds, without active control; the second will target heavier sea states where
reduced (but still high) speed will allow path planning in rough seas to avoid individual extreme
waves with active control. Specifically, we will design and optimize a new concept for a vessel
developed based on preliminary work on the so-called Hybrid Hydrofoil H2-SWATH at MIT.
The craft features multiple operating modes, e.g., in displacement mode, the vessel sails as an
unconventional SWATH at moderate speeds (less than 20 knots) while in foil-borne mode it can
fold into the water the surface-piercing/super-cavitating (SP/SC) hydrofoil, hence potentially
reaching 120 knots maximum speed, i.e., doubling the speed of any existing surface craft. It can
also sail at a slower speed, actively controlled foil-borne mode, e.g. around 60 knots in heavy
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seas with active, real-time path planning to avoid excessive waves.
For the seedling project, due to the limited time and scope of the project we have demon-

strated two key elements of the proposed DUU framework in two related tasks:

1. Multi-fidelity modeling via recursive Co-Kriging and Gaussian-Markov Random Fields,
and

2. Bayesian optimization of the most crucial component of the H2-SWATH, namely, the
supercavitating hydrofoil.

In addition, in section 4 we list a number of publications resulting from the current work
describing the physics-based models that we have developed in the course of this seedling project
to support the computational simulation work required in the design of the H2-SWATH vessel.

2 Task 1: Multi-fidelity modeling via recursive Co-Kriging

and Gaussian-Markov Random Fields

In this task we have developed a new framework for design under uncertainty based on stochas-
tic computer simulations and multi-level recursive co-kriging. The proposed methodology si-
multaneously takes into account multi-fidelity in models, such as direct numerical simulations
versus empirical formulas, as well as multi-fidelity in the probability space (e.g., sparse grids vs.
tensor product multi-element probabilistic collocation). We are able to construct response sur-
faces of complex dynamical systems by blending multiple information sources via auto-regressive
stochastic modeling. A computationally efficient machine learning framework is developed based
on multi-level recursive co-kriging with sparse precision matrices of Gaussian Markov random
fields. The effectiveness of the new algorithms is demonstrated in numerical examples involving
a prototype problem in risk-averse design, regression of random functions, as well as uncertainty
quantification in fluid mechanics involving the evolution of a Burgers equation from a random
initial state, and random laminar wakes behind circular cylinders.

We have already published this work in [3] so here we only provide a simple example to
demonstrate the capability of the method. Specifically, we consider a system with two input
design variables x = (x1, x2), subject to external uncertainties, described by four standard
normal random variables ξ = (ξ1, ξ2, ξ3, ξ4). Let the response of this system, denoted by Y (x; ξ)
be described by the random function

fe(x; ξ) = ξ1 sin2(5ξ1x1 + 2ξ2ξ3x2) + 2ξ24e
−x1(ξ2+ξ3)(x2−0.5)2 cos2(4x1 + x2). (1)

Now, assume that fe(x; ξ) returns the real high-fidelity response but is expensive to evaluate.
On the other hand, let fc(x; ξ) be a low-fidelity cheap to evaluate surrogate model that we can
sample extensively as

fc(x; ξ) = 1.7fe(x; ξ) + 2ξ1ξ2 sin(x1 + x2) + 5ξ3ξ
2
4e
−x1 sin(x1 + 7x2). (2)

Our goal here is to employ the proposed multi-fidelity framework to construct the response
surface of the mean field S(x) = E[Y (x; ξ)]. In order to approximate the expectation operator,
we employ two methods of different fidelity in probability space. To this end, we choose our
high-fidelity probabilistic method to be a Smolyak sparse grid level-5 quadrature (SG-L5) that
discretizes the four-dimensional parameter space using 4,994 quadrature points. Similarly, the
low-fidelity method in probability space is a coarser, level-2 sparse grid quadrature (SG-L2) with
just 57 quadrature points.

Therefore, our multi-fidelity setup consists of two models in physical space (fe(x; ξ), fc(x; ξ)),
and two models in probability space (SG-L5, SG-L2). This results in a family of response surfaces
Sij, that can be organized as
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(
S11 S12

S21 S22

)
=

(
ESG-L2[fc(x; ξ)] ESG-L5[fc(x; ξ)]
ESG-L2[fe(x; ξ)] ESG-L5[fe(x; ξ)]

)
(3)

Fig. 2 demonstrates the response surface produced using a 4-level recursive co-kriging scheme,
traversing the available models and data in the order S11 → S12 → S21 → S22, i.e., from lowest
to highest fidelity. The resulting response surface is compared with an “exact” solution that
is obtained by Monte Carlo integration of the high-fidelity physical model fe(x; ξ) using 106

samples. Evidently, the highly non-linear response of the mean field is captured remarkably well
by just using five observations of the expensive highest-fidelity model S22, supplemented by a
number of inaccurate low-fidelity observations from (S11, S12, S21). This observation is further
confirmed by the uncertainty of the predictor, quantified by the co-kriging variance (see Fig. 2,
inset), which is bounded by 10−3. To underline the merits of using the proposed multi-fidelity
approach note that the relative L2 error between the exact solution and the 4-level co-kriging
predictor is 10−2. This is in sharp contrast with the corresponding error from fitting a kriging
model through the highest fidelity observations S22, which here is as high as 0.5.

3 Task 2: Bayesian optimization of super-cavitating hy-

drofoils

The goal of this study is to demonstrate the capabilities of statistical learning and information
fusion in carving a robust and tractable workflow for design optimization under uncertainty. As a
prototype problem we have considered the shape optimization of a 2D super-cavitating hydrofoil.
We have not yet published this work so here we outline the basic methodology for reconstructing
response surfaces for quantities of interest from the output of multi-fidelity information sources.
The key concepts behind the proposed framework are Gaussian process regression and auto-
regressive information fusion as developed in task 1, see above. This probabilistic setting enables
the accurate reconstruction of response surfaces from scattered variable fidelity observations, and
allows us to identify the functional relation between inputs and outputs with quantified error
bars. The latter is an essential ingredient in Bayesian optimization where the propagation of
input and model uncertainties through the system dynamics needs to be rigorously quantified.

3.1 Formulation

Our aim is to accurately characterize the response surface of various quantities of interest by
seamlessly combining low-fidelity approximations that can be obtained with very low computa-
tional cost (for e.g. potential flow solvers), with a few accurate realizations of high-fidelity models
that are much more expensive to compute (for e.g. RANS simulations). This is achieved by ex-
ploring spatial correlations between input variables (see Fig. 3), and cross-correlations between
different variable fidelity models through a stochastic auto-regressive representation and recur-
sive co-kriging. In what follows we provide a brief overview of the recursive co-kriging scheme
recently put forth by Le Gratiet et. al. [2] – a more efficient version of the well-known auto-
regressive inference scheme proposed by Kennedy and O’Hagan [1] in the context of predicting
the output from a complex computer code when fast approximations are available. The reader
is referred to [1, 2, 3], and the references therein, for a detailed exposition to the theoretical and
implementational aspects of this methodology.
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Figure 2: Exact response surface S = E[Y (x; ξ)] and co-kriging predictor constructed using
four levels of fidelity: 80 S11 points (fc(x; ξ), SG-L2), 40 S12 points (fc(x; ξ), SG-L5), 10 S21

points (fe(x; ξ), SG-L2), and 5 S22 points (fe(x; ξ), SG-L5). The inset plot shows the point-wise
variance of the co-kriging predictor.
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Figure 1: Definition of design variables.

1. Lower bound on inertia
1 − w

wmin
≤ 0

with wmin = 8.1 · 10−6.

2. Lower bound on the profile thickness

1 − t2P
tmin
P

≤ 0

with tmin
P = 0.00132.

3. Lower bound on cavity thickness

1 − t10
C

tmin
C

≤ 0

with tmin
C =0.004.

The objective is a design with low ration CD/CL.
Since many of the above quantities are random (due to manufacturing errors modeled by V ), it

would be too conservative to attempt to enforce the above constraints almost surely. We instead ensure
the they are safely satisfied as rigorously defined in terms of alpha-risk as defined next.

2.2 Formulation of Optimization Problem

Brief discussion of α-risk and buffered failure probability.
The two geometric requirements are combined into one constraints, i.e.,

K = max

{
1 − w

wmin
, 1 − t2P

tmin
P

}
.

Clearly, if K ≤ 0, then constraints 1-2 are satisfied.

3

Figure 3: Design variables defining the B-spline representation of a 2D super-cavitating hydrofoil.

In general, suppose we have s levels of information sources producing outputs yt(xt), at
locations xt ∈ Dt ⊆ Rd, sorted by increasing order of fidelity. The main idea here is to model
the Nt scattered observations yt(xt) of a quantity of interest Yt(x) as a realization of a Gaussian
random field Zt(x). The observations could be corrupted by modeling errors or measurement
noise E(x), which is thereby assumed to be a zero-mean Gaussian random field, i.e E(x) ∼
N (0, σ2

ε I). Regression is performed by assigning a prior distribution on over fields Zt(x), and
calibrating in view of data yt(xt). The Gaussian prior of Zt(x) is completely characterized by a
mean field µt(x) = E[Z(x)] and an auto-corelation function κt(x,x

′; θt), where θt is a vector of
hyper-parameters, to be learned from the data yt(xt). Typically, the choice of the prior reflects
our belief on the structure, regularity, and other intrinsic properties of the quantity of interest
Yt(x).

If we sort the outputs yt(xt) by increasing order of fidelity, then the auto-regressive scheme
of Kennedy and O’Hagan [1] reads as

Zt(x) = ρt−1(x)Zt−1(x) + δt(x), t = 2, ..., s, (4)

where δt(x) is a Gaussian field independent of {Zt−1, . . . , Z1} and distributed as δt ∼ N (µδt , σ
2
tRt).

Also, ρ(x) is a scaling factor that quantifies the correlation between {Zt(x), Zt−1(x)}. The recent
contributions of Le Gratiet et. al. [2] suggest replacing the Gaussian field Zt−1(x) in Eq. 4 with
a Gaussian field Z̃t−1(x) that is conditioned on all known observations {yt−1, yt−2, . . . , y1} up to
level (t− 1), while assuming that the corresponding experimental design sets Di, i = 1, . . . , t− 1
have a nested structure, i.e. D1 ⊆ D2 ⊆ · · · ⊆ Dt−1. This essentially allows to decouple the
s-level auto-regressive co-kriging problem to s independent kriging problems that can be effi-
ciently computed and are guaranteed to return a predictive mean and variance that is identical
to the coupled scheme of Kennedy and O’Hagan [1].

Once Zt(x) has been trained on the observed data {yt, yt−1, . . . , y1} through maximum like-
lihood estimation, the optimal set of hyper-parameters {µ̂t, σ̂2

t , σ̂
2
εt , ρ̂t−1, θ̂t} is known and can be

used to evaluate the predictions ŷt, as well as to quantify the prediction variance v2t at all points
in x?t (see [2] for a derivation),

ŷt(x
?
t ) = µ̂t + ρ̂t−1ŷt−1(x

?
t ) + rTt (Rt + σ̂2

εtI)−1[yt(xt)− 1µ̂t − ρ̂t−1ŷt−1(xt)], (5)

v2t (x
?
t ) = ρ̂2t−1s

2
t−1(x

?
t ) + σ̂2

t

[
1− rTt (Rt + σ̂2

εtI)−1rt +
[1− rTt (Rt + σ̂2

εtI)−1rt]2

1Tt (Rt + σ̂2
εtI)−11t

]
, (6)

where Rt = κt(xt,x
′
t; θ̂t) is the Nt×Nt correlation matrix of Zt(x), rt = κt(xt,x

?
t ; θ̂t) is a 1×Nt

vector containing the correlation between the prediction and the Nt training points, and 1t is
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a 1×Nt vector of ones. Also, κt(xt,x
′
t; θt) is the auto-correlation kernel that quantifies spatial

correlations at level t, with corresponding hyper-parameters θt.

3.2 Results

In this study, the quantities of interest are the drag to lift coefficient ratio CD

CL
, and the ratio

between the cavity thickness at 10% of the chord over the minimum cavity thickness,
t10C
tmin
C

. The

recursive co-kriging scheme is employed using two levels of fidelity, with low-fidelity observations
originating from sampling a potential flow solver, while high-fidelity data is obtained though
RANS simulations. Our goal is to reconstruct an accurate representation of the response surfaces
that provide the functional relation between each quantity of interest and the 15 input variables
defining the shape of the hydrofoil (see Fig. 3). To this end, we have a constructed a predictive
inference scheme by training a squared exponential auto-correlation kernel on a subset of the
available observations. In all cases we have considered a training set consisting of 300 randomly
sampled low fidelity observations (potential flow solver), supplemented with 60 realizations of
the high fidelity code (RANS). The accuracy of the resulting probabilistic predictors is then
tested against the full set of 898 high fidelity observations. In both cases, the total CPU time
for training and predictions was about 15 minutes on a single core laptop.

The scatter plots of Fig. 4 provide a qualitative illustration of the predictive capacity of the
resulting multi-fidelity surrogates. In particular, Fig. 4(a) depicts the output ŷ of the co-kriging
predictor for 100 × CD

CL
evaluated at all test locations, versus the output y of the high-fidelity

RANS solver at these 898 points. Similarly, in Fig. 4(b) contains the results corresponding to

the co-kriging surrogate for
(

1− t10C
tmin
C

)
. We observe that all predicted points (black cirlces) are

tightly clustered around the diagonal (dashed line), indicating that the surrogates where able to
accurately identify the input-output relations for both quantities of interest.
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Figures 5, 6 measure the accuracy of the resulting milt-fidelity surrogates in predicting the
density distribution generated from the 898 test outputs of the high-fidelity RANS simulator.
In particular, Fig. 5(a) shows the densities corresponding to the “exact” high-fidelity RANS
output, the multi-fidelity co-kriging predictor, and a kriging model trained using only 300 low-
fidelity observations. The multi-fidelity surrogate is able to capture the density distribution
remarkably well, even at the more challenging region around the tails (as depicted in log-scale
in Fig. 5(b)). It is also evident that using a kriging surrogate trained on solely low fidelity
observations leads to inaccurate predictions, thus highlighting the importance of employing a
multi-fidelity approach. Finally, these conclusions also hold for the density estimation results

corresponding to
(

1− t10C
tmin
C

)
, as depicted in Fig. 6(a),(b).
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Figure 5: Testing the ability of multi-fidelity co-kriging surrogates to predict the desired quan-
tities of interest against the corresponding output of high-fidelity RANS simulations. Density

estimation for 100× CD
CL

in linear (left) and logarithmic scales (right). Results corresponding to

a kriging surrogate trained using only 300 low fidelity observations are included to highlight the
significant advantages of a multi-fidelity approach.
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Figure 6: Testing the ability of multi-fidelity co-kriging surrogates to predict the desired quan-
tities of interest against the corresponding output of high-fidelity RANS simulations. Density

estimation for
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)
in linear (left) and logarithmic scales (right). Results corresponding

to a kriging surrogate trained using only 300 low fidelity observations are included to highlight
the significant advantages of a multi-fidelity approach.
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